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Abstract

There are several papers concerning shielding of coherent
synchrotron radiation (CSR) emitted by a Gaussian line
charge on a circular orbit centered between two parallel
conducting plates. Previous asymptotic analyses in the
frequency domain show that shielded steady-state CSR
mainly arises from harmonics in the bunch frequency ex-
ceeding the threshold harmonic for satisfying the bound-
ary conditions at the plates. In this paper we extend
the frequency-domain analysis into the regime of strong
shielding, in which the threshold harmonic exceeds the
characteristic frequency of the bunch. The result is then
compared to the shielded steady-state CSR power obtained
using image charges.

1 INTRODUCTION

There have been several studies [1, 2, 3] conceming
shielding of coherent synchrotron radiation (CSR) emitted
by a Gaussian line charge on a circular orbit centered be-
tween two parallel conducting plates. Nodvick and Saxen
[1] developed an exact expression for the power radiated
by a bunch in steady state, written as a summation over
all harmonics of the radiated power. Using the asymptotic
behavior of the Bessel functions in these radiated-power
harmonics, Kheifets and Zotter [2] recently developed a
simple expression for the shieided CSR power as a func-
tion of beam and machine parameters. In an alternative
derivation, Murphy, Krinsky, and Gluckstern [3] obtain the
CSR power by including image charges from the parallel
plates to calculate the CSR-induced steady-state longitu-
dinal electric force across the bunch.

According to Ref. [2], shielded CSR is important for
harmonic numbers n in the range n; < n < n,., where

ney = V2[3(mp/h)2,  n.=plo,. (1)

Here, p and h denote the radius of the circular orbit and the
plate separation, respectively, o, denotes the root-mean-
square bunch length, n,, is the threshold harmonic for
satisfying the boundary conditions at the plates, and n. is
the characteristic harmonic number below which the radi-
ation will be coherent. However, according to Fig, 9 of
Ref. [3], which compares the shiclded CSR power calcu-
lated using the image charge method with that given in
Ref. [2], there is an evident discrepancy. For ng > n.,
i.e., for strong shielding, the result given by Ref, {2] un-
derestimates the shielded CSR power considerably.

In this paper, we modify the analysis of Ref. [2] using
power harmonics in Ref. [1] to obtain a result for the

steady-state CSR power in agreement with the exact result
for n¢ep > n.. We show that for this parameter range the
shielded CSR power is not always negligibly small.

2 PREVIOUS RESULTS

We consider a line-charge bunch moving on a circu-
lar orbit of radius p with angular frequency wo in the
center plane between two perfectly conducting plates at
z = +hf2. According to Kheifets and Zotter [2], based
on the work of Nodvick and Saxon, the power radiated by
a single relativistic electron in the nth harmonic is
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where 7,0 = |/n? — g} with g, = prp/h, and p is the

index of eigenfunctions satisfying the boundary condition
at the plates. Only propagating modes, i.e., those satis-
fying n > g,, contribute significantly to the power Fy;
therefore, when =p/h 3% 1 it suffices to use asymptotic
expressions of the Bessel functions for large n:

In(1pp) = T('E)Klla(y,’,/ 3n%),

(3)
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The modified Bessel functions are appreciable only when

n > g;’ ’s gp. Consequently, for wo = ¢/p, the power
harmonic of N electrons reduces to
4N%e2c p<uh/re

Pn= Faoh p;3 A(n,p) (4)

where
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The CSR power generated by a relativistic Gaussian line
charge with N electrons is

[+ =]
FPeon = Z P"e-(na./p)z. (6)
n=0

In Ref. [2], it is assumed that the CSR power comprises
mainly harmonics P, for which n > n,;. Changing the
summation over p into integration gives
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witere Cp = 2C/3"/*#?, with C ~ 3.68. The total CSR
power is then obtained by replacing the summation over
n by an integration over z = (na,/p)%
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with 2,5, = (nyp/n.)% z. = 4r, and I'(v, ) denoting an
incomplete gamma function.

The free space CSR power is obtained by setting zy
to 0,
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where F(0)Co/2 =~ 0.35. This result agrees with that
obtained by Schiff [4],

2,2, 31/6 2
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in that 3'/5[F(2/3)]*/2r ~ 0.35. The formalism of
Eq. (B) therefore sets the ratio of shielded CSR to that
of free space as

Poon/ P = F(z)/T(2/3).

3 MODIFIED ANALYSIS

(11)

We will now show that the results of the previous section
are applicable only for weak shielding, namely, n;y < n.,
due to the replacement of the sum over p by an integral
and the discarding of the contribution of harmenics n <
ni,- We do so by first showing that, for each pth mode
satisfying the boundary conditions at the plates, there is
a threshold harmonic n(’;‘) = p*/?n,,, where ny, given in
Eq. (1) is the threshold harmonic for p = 1, i.e., ny =
nsf._') The pth mode contributes significantly to the CSR
power only when n{) < n., or p < (n./nw)*>. Using
integration over p on the interval [0, co) to derive Eq. (7)
from Eq. {(4) is valid only if n,, < n., which is the
quasi-free-space, weak-shielding sitvation. However, if
the parameters do not satisfy ng, < n,, only the first few
p modes contribute to P,y in Eq. (6). In particular, when
ny, > ng, only the p = 1 mode contributes significantly
to P.on, and in this case Eq. (8) is manifestly inaccurate.

We begin our analysis by showing that it is permissible
to exchange the order of the summations over p and r,
which then allows an explicit calculation of the contribu-
tion of the pth mode to the CSR power. The asymptotic
behaviors of the modified Bessel functions are

Ko (2) ~ e (large 2)
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(12)
Numerically one finds that the asymptotic behavior of
K,(z) for large z is good to 10% at z = 1/2 for

v = 1/3,2/3. Therefore, the modified Bessel functions
in Eq. (5) are exponentially small when g, 3/3n > 1/2

orn < n®), and their contributions to P, are then negli-
gible. This typifies the nonpropagating modes, i.c., those
for which p > nh/7p, because g3/3n% > nf3 > 1 for
large n. Consequently one can extend the summation over

" p to infinity in Eq. (4) without sacrificing accuracy, and

therefore exchange the orders of summation for indices p
and n in combining Eqgs. (4) and (6) to obtain
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with I(p) denoting the contribution of the pth mode to the
coherent radiated power:

I(p) =3 Aln,pe /")’ (14)
n=0

To obtain a closed-form expression for P.,;, we first
calculate the asymptotic form of I(p). After defining

’m (n /n ) z= (n/nc)z, (15)

we note that, provided n, 3 1 and ng‘) > 1, the summa-
tion over n in Eq. (14) can be replaced by an integral:

=2 [ " 1) (z)as, (16)
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Applying the asymptotic form of the modified Bessel func-
tion in Eq. (12) for the frequency range n < ng) gives

()
FO(z) = P (z) = 2—::--exp (—Eﬂi— - ,;) (z < I(P))

(18)
Hence I(p) in Eq. (16) is

I(p) = Io(P) +Al(p);

I(p) = f(P)(z) dz = 37g, Ko (2\/.1:3? |
Al(p) = —f [ @) - @) de.
&y
“ (19)
The relative error of estimating I{p) using Jo(p) is plot-
ted in Fig. 1 as a function of xg:). The plot shows that
when zg’,;) > 1, AI(p)/Io(p) is negligibly small, and in
this limit I(p) =~ Jo(p). This circumstance arises because,

in the integrand of AI(p), the error introduced by using
the asymptotic form of K,(z) is suppressed by a factor

e=* for z > z&) > 1. Moreover, when z{l > 1, we



can use Eq. (12) to express Ko (2\/1:3’,) ) of Eq. (19)

in its asymptotic form, after which we find Jo(p) o
p'/Yexp[-2p*/3(ngy, /n.)]- This expression shows clearly
that, when n,;, > n., Ig(p) rapidly decreases with increas-
ing p, so in this strong-shielding limit, the CSR power

4N e’e
Poop =~ Z IO(P) (nth > nc)
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(20)

is dominated by p = 1 mode, and its ratio to the free-space
steady-state CSR power in Eq. (10) gives

Poon/PE) ~ Colnen/nc)*/® exp(—2nn/ne.), (nen ?2’1';)
with Cp = 4v/3x/2%/3[['(2/3)]* ~ 4.2. This modified
result for the shielded CSR power in the parameter regime
np > n. differs markedly with the result in Eq. (11).

To emphasize the importance of our findings, we com-
pare the analytic results given in Egs. (20) and (21) with
the previous result in Eq. (11) by way of Figs. 2 and 3.
The circular dots in Fig. 2 are obtained numerically from
Eqs. (11) and (12) of Ref. [6] for the steady-state case, a
result that derives from application of the image charge
method. The crosses are obtained by direct summation of
power harmonics in Eq. (6}, in which the upper limit of
the sum is chosen empirically by monitoring convergence
of the result. It is clear that, for r;s > n., our simple
result in Eq. (20) for p = 1 agrees well with exact calcu-
lations using the image charge method and superposition
of power harmonics. It is also clear that a large number
of p modes are needed only for the weak-shielding case
when n;;/n. < 1. An alternative way to view the results
is provided in Fig. 3, in which the sclid curve denotes
the Kheifets-Zotter result, and the dashed curve denotes
the result of Eq. (21) which is accurate for nearly the full
range of values along the abscissa. Fig. 3 is to be com-
pared with Fig. ¢ in Ref. [3], in which our dashed curve
is replaced by the exact results from the image-charge
method. There is no discernible difference between the
two figures, These compansons show the validity of using
Eq. (21} to describe Pcoh/ ,, ) when ny, > ne, and they
also underscore the validity of the image-charge method.

4 DISCUSSION

According to Ref. [5], for the p = 1 mode, the radiation
intensity in the nth harmonic falls off exponentially as n
decreases from ny, to zero. This is seen in Eqs. (4), (5)
and (12) for p = 1, where K2(g}/3n?) o e~"/"’ for
n < ng. If ng € 0, then the contribution of the ra-
diation intensity in the range 0 < n < nqy is negligible.
However, for r;s > n,, all the bunch frequencies lie in-
side the range 0 < n < nqy, and thus those harmonics are
the main contributor to P.,,. Discarding these harmonics
results in a potentially considerable underestimation of the
radiated power.
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Figure 1: Relative error in using Io(p) to estimate I(p) as
a function of &), as obtained using Eq. (19).
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Figure 2: Comparison of P, in Egs. (20) and (21)
with results from the image-charge method and other ap-
proaches. Here nqy, /n, is varied by changing h with fixed
values of p (= I m) and ¢ (=1 mm.)
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Figure 3: Plots of P, /Pe(:;). versus I = o/(2pA%?)
with A = h/(2p). This should be compared with Fig. 9
of Ref. [3].



